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A Third-Order Boundary Condition for 
the Exterior Stokes Problem 

in Three Dimensions 

By Georges H. Guirguis 

Abstract. We approximate the Stokes operator on an exterior domain in three dimensions by a 
truncated problem on a finite subdomain. A third-order artificial boundary condition is 
introduced. We discuss the approximating behavior of the truncated problem and its discreti- 
zation in a finite element space. Combined errors arising from truncation and discretization 
are considered. 

1. Introduction. We study the numerical approximation to incompressible viscous 
flows in a domain exterior to a bounded star-shaped set in R I. In [10], [11] essential 
and natural boundary operators have been considered on finite subdomains of the 
exterior domain. It is our task in this paper to derive a higher-order, precisely a 
third-order, boundary condition. We extend the methods in [3], [10], [11], [12] to deal 
with the complexity of the governing vector equations in spherical polar coordinates. 
Let .9 be a bounded star-shaped set in R 3. Let Q be the complement of its closure in 
R 3. Let x = (x1,x2,x3) =(r,O, p) denote a generic point in R 3, and Ix the 
distance from the origin, given by 

r=IxI= (X + X2 + X)12 

Let X = (X1, X2, X3) denote a multi-index and let IX = X1 + X2 + X3. Let 

i - axi 

denote the distributional partial derivative with respect to the ith coordinate and let 

Definition 1.1. For m a nonnegative integer and a E - R we define the weighted 
Sobolev space [13] 

Wm a(Q2) = u E D'(0): f (1 + r2)a-m+?I1D'xu 2dx < oo , < m 

where D'(Q) denotes the space of distributions over U. E 
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We refer the reader to [9], [10], [11], [13] for the properties of these spaces. 
Wrn'(9) is a Hilbert space equipped with the inner product 

(U V)m; E ( (1 + r2)a m?+XD uD Vd} 

and norm 

IIUI|ma;Q = [(U, U)ma;Q] 
We let Wm-j-l/2(83), j = 1,..., m - 1, denote the trace spaces on the boundary 
%?, and we use the notation Wm "(Q) to denote the completion of Co((Q) in the 

*I 11m a;&2. We also use the notation of W-m-`(Q) to denote the dual spaces of 

WmrnL(Q) with duality pairing denoted by 

KU, V)ma;&, 

equipped with the norm 

||U II| m-a= sup (u, V)ma; 
vEra(Q) IV iemaQ 

The Stokes problem will be denoted in the sequel by the continuous problem as 
given by 

(1.1) - Au + Vp = f in Q, 

(1.2) divu=O in 2, 

(1.3) uIa1 = 0, 

(1.4) lim u(x) = 0, 
IxI-* o 

with the support of f compact in U. In [9], [11], problem (1.1)-(1.4) has been posed 
variationally on the weighted Sobolev spaces defined above. For the details of the 
proof we refer the reader to these references. Thus, we state the existence theorem. 

THEOREM 1.2. The weak formulation of (1.1)-(1.4) is given by: Seek (u, p) E 

[W"0( )]3 X L2(i) such that 

(1 .5) a (u, v) + b (p, v) = f (v) alvE[W1 ]3 

(1.6) b(q,u)=O Vq E L2(U), 

where 

a(u,v) = f grad u: grad v dx, 

b(p,v)= - pdivvdx, 

has a unique solution pair (u, p) for f E [W- 1,0(Q)] 3, and there exists a constant 
C > 0 such that 

IIUII1io;Q + IP IIoo;Q < Cut II-1,O;f - 

Furthermore, if Q is a Cm domain [1] and f E [Wm-l m(Q)]3, then 
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and 

11U11m. m; + 11 P C1mm; < lf Ilm- 1,m;Q U. 

It is essential, for computational purposes, to approximate the continuous prob- 
lem by another problem, to be known in the sequel as the truncated problem, 
defined on a finite subdomain OR of the original domain U. Define the truncated 
domain to be 

OR= = n B(O; R), 

where B(O; R) denotes the sphere of radius R centered at the origin. Let 3OR denote 
the large artificial boundary introduced to construct the truncated domain. Then the 
truncated problem is given by 

(1.7) - OUR + VPR = fR in OR, 

(1.8) divuR =O in QR, 

(1.9) UR =O on3S2, 

(1.10) /(UR, PR) = O on3SiR 

where /3(, ) denotes an artificial boundary operator needed at the large boundary 

SUR' It is important to point out at this stage that the use of higher-order boundary 
operators can only be associated to smoother solutions at the artificial boundary 
SUR, so that the artificial boundary condition at SUR could be interpreted in the 
sense of trace spaces of Lions [15]. This is the case if f has a compact support in OR 

or f is smooth enough for R > Rol This is provided in Section 2. 
In order to derive the approximating properties of the truncated problem, we will 

need the following estimates. 

PROPOSITION 1.3. Let u E C q(g) n W1"0(Q) be such that u = O(r-a) for a > 1/2 
and r > R. Let = Q2\ QR denote the open domain exterior to OR' Then we have 
the following: 

(1.11) lUlls s-i;Q = O(R-a+1/2), s > O, 

(1.12) lUll -s,-s+1;Q = O(R-a+1/2), s > 0, 

(1.13) lUllS-1l/2S-1;8QR = O(R-a+1/2), s > 1/2, 

(1.14) 1Ull-s+1/2-s+1;?8QR = O(R-al+1/2), s > 1/2. l 

Remark. As pointed out in [10], the result (1.11) can be shown for s integer, then 
proceed by interpolation for any s > 0. Then, using a similar argument for the trace 
spaces, (1.13) can be shown. Finally, (1.12) and (1.14) can be shown by duality 
arguments. In the following sections we will derive the third-order boundary 
operator in spherical coordinates, obtain the variational formulation of "the trun- 
cated problem" and obtain error estimates relating the solutions of the truncated 
problem and the solution of the continuous problem on the domain OR. Finite 
element approximations of the truncated problem are discussed in detail in [10] and 
[11]; so we conclude the work with combined error estimates. 
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2. The Truncated Problem. 
2.1. Derivation of the Boundary Operator. Consider the Stokes operator in spheri- 

cal coordinates in IR' 3. Let 

U = (Ur, UO, U'd. 

The momentum equations are given by 

(2.1) -Flur_ 2ur 2 a(uosin0) _ 2 aUp9 3 a 
r 

r2 r2si 3a0 r2sin 0 a p 3r 

2 aur _ UO 2cos0 au Ilap 

(2.2) - ~ +r2 ao r2sin20 r2sin20 aq + r a3 - 

(2.3) - AU9 + 2 3ur + 2cos0 u= _ Ur + 1 
99r sin0 a3T r 2sin26 3Ta r 2sin2 0 rsin0 aqp 

and the continuity equation is given by 

(1 a(r2ur) + 1 (sinOu0) + 1 u, 
r2 ar r r si0 asn 

Using (2.4) and (2.1), we eliminate the presence of uo and uT to get 

(2.5) ap = AdU + 2 apur 2 
(2.5) 3~~~~~~ar r r 3r r2 

At this stage, it is essential to point out that Eq. (2.5) uncouples the velocity in the 
radial r direction from the velocities in the tangential 0 and q directions. It will be 
seen later that Eq. (2.5) will simplify the variational formulation of the problem. 

PROPOSITION 2.1. Let (u, p) denote the solution of the Stokes problem with support 
of f compact in R 3 and supp(f) C C B(0; R0). For R > R0 define 

(2.6) 31(ur,p)=p- 3Ur + 2[ a a2ur u2 a 2r 
2 

ro 3r 2 3r 32r J r r 

(2.7) 132(UO) 3r + -U0, 

(2.8) 
pU3(u9) - 1U. a3r r 

il(Ur, P) 

(2.9) 3(u,p)= 132(UO) 

Then 

| 0(u, p) |=o(R-3). 

Remark. The proof is a direct consequence of the asymptotic expansion of both 
the velocity and pressure fields [14]. Since conditions (2.7) and (2.8) are similar to 
the scalar case [12], we proceed also to give a brief explanation of the way the 
boundary operator (2.6) is generated. It is known [14] that the solution pair of the 
continuous Stokes problem in IR 3 satisfies 

(u, p) = O(R-1, R-2) 
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hence 

paaur =O (R - 2 ) 3Uar 

and therefore 

3ur+ r [3p 32Ur] =o(R 3) 
P ar 2 ar a2r ]_) 

Finally, the terms 

2 aur + 2r= o(R-3) 

have been added for the sole purpose of eliminating the normal derivative of the 
radial velocity contribution at the large boundary SUR in the variational formula- 
tion. E 

We simplify (2.6), using (2.5), to obtain 

aur r [ap a2u ar 2 
= - 2[ 2 r] 2 + -Ur 

2r sin2 ar r s] 2rsinO r 

Hence, the final form of the boundary operator in the radial direction is given by 
3Ur ~ ~ r 

fii ( Ur, PS)iP 3r 

2r sinO o aL ]+ 2rsin2o aq r r 

2.2. Variational Formulation of the Problem. Let (UR, PR) denote, respectively, the 
velocity and pressure solutions of the truncated problem. The velocity in spherical 
coordinates is given by 

UR = (U a ,4U ). 

Let [WR(daR)]3 denote the subspace of [Wby0(iR)]3 given by 

[WR(Ui)R]3 = {(Ur, U0, Uq) e [W1EO(QR)]3, u = O on Si2, Ur 
Z W1 (SUR)}, 

equipped with the inner product 

(u' v)= grad u: grad vdx ( ) dx 

+ ( 1 vdS + r() + r2) /2gradturgradtvrdS 

= (UV)1,O;QR + (Us, VO)O,-1/2;&QR + (U ,Vq,)O, 1/2;&&R + (Ur, Vr)l1l/2;80R 



384 GEORGES H. GUIRGUIS 

with grad, denoting a tangential derivative along the surface SUR. The norm 
generated by this inner product is given by 

U II R;2R = [ (U. U)]/ 

i.e., 

U12 2= 11U 11,oR+ + + U 1222 ||U| ;R = | 0; I1SO R + 01U l;- 1/2; 8QR + 11 UIP llo;- 1/2; 8QR 11I Ur I1 1/2; 8QR 

Remark. Note that [WR(UiR)]3 is not smooth enough to build [W3/2"1/2(OR)]3. In 
fact, we observe that 

[ W3/2,1/2 ( O )]3 C [WR(OR )]3 C [ W '(QR)] 
3 

We only require the smoothness of Ur on the boundary SUR in the sense of 
W1,/2(3QR). Some of the properties of [WR( OR)]3 are listed in the following 
lemmas. 

LEMMA 2.2. [WR( OR )]3 is a Hilbert space. E 

Let X r denote the characteristic function of the domain UR. Define the set K to 
be 

K= {ulu = XRV, V E NO)) 

LEMMA 2.3. K is dense in [WR( OR )]3. ? 

The variational form of the momentum equation (1.7) can be obtained in the usual 
manner by multiplying by a smooth vector test function v and then integrating by 
parts to produce a form which, through continuity arguments, can be extended to 
build the weak formulation. This yields 

f grad uR: grad vdx + f pRdivvdx 
QR QR 

+f (pRn- n graduR) vds=J f vdx. 
OQR QR 

For 3 2R the surface of a sphere, we have n= er. By using the expression for 
n- grad u in spherical coordinates we can further simplify the integration on the 
boundary 86R to 

I 1' a~~~~~~~~~~~~_r _ _ _ 

| (PRn - n -graduR) vdS PRVr - Vr o v q) 
adS. f2 (P&"RRr - 

r ar q'r 

Now, using the artificial boundary operator /3(UR, PR), we get 

J (pRn-n graduR) vdS 
&2R 

VrR a~1 r a2UR 
= | _ X ~~a [sn V r a r 2r ino[ + -@VS + 

___sin_ 
&2R 2rsino j 2r sin O a~2 

Rr+U RVe + UqR 
+ Ur- ? r ~r sin dO d~dp. 
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Integrating by parts in the 0 and the q variables over the surface of the sphere SUR, 
we obtain 

(PRn - n - graduR) * vdS=j +d2in4 1 au, aV] 

URVr + US RV + UG gR sndd 

QR 

I 1[ aR a 1 uR as u%?uRur+rv,,+u, 

+ r 
Ur ar sin 0 dOd dp. r 

Remark. Any distance r on the boundary SUR in the last expression can be 
replaced by R, since we are dealing with a sphere of radius R. 

Define the bilinear form 

A(URIV) gradd U R: grad vdx 

b(q,v) =- qdivvdx. 

R~~~~~~~Q 

Note that the forms A(., .) and b(*, *) are continuous bilinear forms on [WR(s2R)I3 
x [WR(s2R)]3 and L2(S3R) X [WR(s2R)I3, respectively. We are now ready to state the 
weak formulation of the problem (1.7)-(1.10): 

Seek (UR, PR) e [WR(S3R)I3 X L2(QR) such that 

(2.10) A(uRv) + b( pRv) = (fv) Vv E U RVO )] R 

(2.11) b(q,UR) ==0 tq E L2(SI2R). 

The variational formulation is of the Brezzi type [3]. We need to verify the 
conditions for which a solution exists, namely the coercivity condition on A(.,.) 
and the stability condition on b(., *). The coercivity of A(., .) is considered in the 
following lemma. 

LEMMA 2.4. For u E [ W1'0( ) 3 we havre 

| U2 dx 2 ?a s+J [-]2dxl. 
fR (1 + r2) L [R (1 +Ur2)1'2 dS 

Proof. See [10]. El 

COROLLARY 2.5. The symmetric bilinear form A(.,.) defined on [WR(tIR)I3 x 
[WR(Ql)I3 is strongly coercive, i.e., there exists a constant C independent of R such 
that 

A(URuR)> CIIURII=;fR VUR E [WR (OR)] * 
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LEMMA 2.6. We have 

sup b(p, v) > ClipP 1IO O;&R VP E L2( OR) 
V E-[ WR(.QR)]' II R;&2R 

Proof. We use the stability condition for the truncated problem with zero velocity 

boundary condition at the artificial interface OR [10]: 

sup b(p,v) > sup b(pv) > CIIPIlOO;&R Vp e L2( OR)- [ 
VEwR(Q )] IVIRs2 E[10(, IIVIIR;Q2R 

We are now ready to state the following existence theorem concerning the varia- 

tional formulation of the truncated problem. 

THEOREM 2.7. Given fR E [W-1'0()]3, with 2 c c S1, there exists a unique solu- 
tion of problem (2.10)-(2.11). Furthermore, there exists a constant C independent of R 
such that 

(2.12) llUR IIR;QR + 11 PR lIOO;QR < fl l-1,0;QR 

Now we are ready to consider the approximating behavior of the truncated 

problem. 

2.3. Approximation Results. As mentioned earlier, an approximation that makes 

use of a higher-order artificial boundary operator will need a smoother solution of 

the continuous problem at the artificial boundary 8OR. For the third-order boundary 

operator, we need the solution of the continuous problem to have the property 

Ur E W1,1e2(OR) 

Let eR = u - UR and OR = P - PR denote the error in the velocity and the pressure, 

respectively. Then the pair (eR, OR) satisfies 

(2.13) - AeR + VtR = O in OR, 

(2.14) diveR = 0 in OR, 

(2.15) eR = 0 on82, 

(2.16) fi(eR, R)=fi2(U,P) on8Q6R. 

The problem of estimating the pair (eR,9 R) can be formulated variationally as 

follows: 

Seek (eR, 9 R) E [WR(OR)]3 X L2(OR) such that 

(2.17) A(eR, V) + b(IR, V) = (/(Up ) V)1/20;'82R VV E [W OR()] 
3 

(2.18) b(q,eR) = 0 Vq E L (OR) 

where the expression in the right-hand side can be written as 

K /3(u, P) V) 1/20; 80R = p - n grad u, v) 1/2,0; + 2(ur Vr)1,1/2; 8R 

+2 ( ur9 Vr) 1,1/2;a 0R + ( uO, v )O ?+ 1/2; 8 R ( Uq (P vqD )0,_ 1/2; 82- 

Thus we see that the quantity W3(u, p) is in [W-1/2o0(8_2)j3 in the sense of Lions 
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[15]. Now, similar to Theorem 2.7, we have 

THEOREM 2.8. (i) The variational form (2.17)-(2.18) has a unique solution pair 

(eR, I R), and there exists a constant C independent of R such that 

(2.19) h1eR IIR;Q2R + 1I IR 110,O;s2R < C /3(u, p) | -1/2,0;802R- 

(ii) For supp(f) compact in S1 we have 

lie ~~C 
||R 11 R; O2R + 11 A R 110,0; s2R R2.5' 

where again the constant is independent of R. 

Proof. To prove (i), we use Theorem 2.7 with right-hand side given by 

( K (U, P ), V) 1/2,0;8 OR 

As for (ii), this follows from (i) and Proposition 1.3. El 

3. Discretization of the Truncated Problem. 
3.1. The Discrete Problem. We use notation similar to [7]. Let 

R= U K, 
KE Th 

where K denotes a simplex in R3. Let h(K) be defined to be the maximum length of 
an edge belonging to the simplex K and let h be defined to be 

h = max h(K). 
KE Th 

In [10], [11] it has been shown that the finite element approximation in the weighted 
spaces has qualitative properties similar to the results obtained for the Stokes 
problem in bounded domains. We refer the reader to the references [2], [5], [6], [7] 
for proper choices of stable pairs of finite element spaces for the velocity and 
pressure, respectively. Let Vh and Sh denote finite-dimensional subspaces [WR(U2R)]3 

and L2( 2R), respectively. Let Th denote the trace space of Vh on 82R. Define Zh to 
be the null space associated with the form b(-, -), given by 

Zh = {Vrh E V b(qrvr) = 0 Vqr Sh}. 

The variational form of the discrete problem is now given by: 
Seek (Urhl Prh) E Vh X Sh such that 

(3.1) A(UrhVrh) + b(PrhVrh) = frh(Vrh) 'VVrh E Vh, 

(3.2) b(q^, ur ) = 0 Vqrh E Sh 

The following assumptions can be verified for a variety of finite element spaces for 
the pressure and velocity: 

(Al) There exists a map, denoted by 

rh E I[W 21(ER)] n V; Zh)I 

and a positive integer v such that 

b(qRh, divrhv - v) = 0 Vq~h E Sh 

with 

liv - rhvlll,O;Q2R < Chmhlvhlm+1,m;OR 

and 1 < m < v. 
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(A2) There exists an orthogonal projection operator 

Sh E Y([W W23/2( SUR)]; Th) 

and a positive integer v such that 

i V - ShV 11,1/2;8SR < Chml V ILm+,lm+l/2;6SR Vv E Wm1,m+112(SUR), 

with 1 < m < v. 
(A3) The orthogonal projection denoted by 

Ph ES (Wmm(2R) n S; Sh) 

satisfies 

lIq - PhqllOO;R < ChMllvlVm m;QR Vq E Wm m(QR) n S. 

(A4) For every qRh E: Sh there exists a WRh E Vh such that 

(qRh- divhwRh, Sh) = 0 VSh e Sh 

with 

||WR h I I 1,0O;R _<' CII qRh II0,0;QR - 

Remark. The assumptions (Al, A3, A4) were needed for lower-order artificial 
boundary operators and have been discussed in [10], [11]. Also, Assumption (A2) 
can be easily verified using the methods in [10], [11] and then the isomorphism 
between Wm+l'a(3SR) and Wm+l(3SR) [13]. We can now state the following 
theorem. 

THEOREM 3.1. Under the hypotheses (Al), (A2), (A3) and (A4), problem (3.1)-(3.2) 
has exactly one solution pair (uRh' PRh) E Vh X Sh, and 

lim {IIURh - UR l1,O;1QR +IIPRh PR IIoo;OR} = 0. 
h-0O 

Moreover, if the pair 

(UR pR) e {WS?1 s(QR) n[WR(0R)I3} x{ws W (]3R)l, 

we have the usual bound 

{ IIURh - UR II1,O;S2R + II PRh - PR IIOO;R } < Chm{ IIUR m+1,M;S2R + II PR IImM;SR } 

for I < m < s and C independent of h and R. E 

3.2. Combined Error Estimates. As in [10], [11], we now combine the error 
estimates due to truncation and discretization. 

THEOREM 3.2. There exists a constant C independent of h and R such that 

(3.3) {IIURh -U I1l,0;QR + IIPRh P IIoSO;2R)} < C hm + R2.5 }, 

with m depending on the choice of the finite element spaces used in the discretization of 
the truncated problem. O 

Finally, it is essential to point out for two-parameter approximations that the 
balance between the truncation error and the discretization error should be main- 
tained for the optimality of the approximation [8]. As a consequence, larger 
simplices can be used in the far field, instead of using a quasiuniform mesh, and thus 
achieving the same accuracy with a lower number of degrees of freedom. 
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